Voimaluste voimalikkus
Автор: Jaan Kaplinski
Год издания:
Valik esseid:Mis on luule?Kirjanduse tahendusestMood ja ilm, aeg ja luuleInterpretatsioonid ja impressioonidTammsaare ja HemingwayArvo Vallikivi skeptiline mutoloogiaKuningas ja neandertallaneAjapinde ja ruumikillukesiRahvalaulu juurde joudmineMoned «Tahe morsjast» virgutatud mottedParallelismist lingvisti pilgugaRiimidest: natuke teooriat ja rohkem praktikatVoimaluste voimalikkus. KeelAdverbid ja verbidPool kinga pooles jalasKeel ja maluStiihiline keelekorraldus argoos ja uhiskeelesKriitilisi motteid lendavate kummikute asjasKeelekorralduse suvastruktuuristMinu eesti keel
Islandil. Kohalolek ja randamine Facebukoloogiliste motiskluste 2. raamat
Автор: Risto Laur
Год издания:
Islandil muusikuna tootavat Risto Lauri on kuluaarides nimetatud Eesti kirjandusmaailma uueks taheks, kelle jouline stiil eristub tuntavalt. Risto Facebookis avaldatud motted hakkasid koheselt silma paljudele, neist sundis ka 2013. aastal kirjastuses SE&JS avaldatud raamat «Islandile. Teekond ja paralejoudmine.» Kaesolev teos on motteline jatk esimesele raamatule, kuid seekord mahukam, julgem ja «tsenseerimata», sisaldades lugusid, mis on sundinud taiesti omalaadsest, mitte kedagi kulmaks jatvast maailmanagemusest.
Kivialuste ristitutar
Автор: Friedrich Reinhold Kreutzwald
Год издания:
Friedrich Reinhold Kreutzwaldi rahvajutt.
Financial Models with Levy Processes and Volatility Clustering
Автор: Frank J. Fabozzi
Год издания:
An in-depth guide to understanding probability distributions and financial modeling for the purposes of investment management In Financial Models with Levy Processes and Volatility Clustering, the expert author team provides a framework to model the behavior of stock returns in both a univariate and a multivariate setting, providing you with practical applications to option pricing and portfolio management. They also explain the reasons for working with non-normal distribution in financial modeling and the best methodologies for employing it. The book's framework includes the basics of probability distributions and explains the alpha-stable distribution and the tempered stable distribution. The authors also explore discrete time option pricing models, beginning with the classical normal model with volatility clustering to more recent models that consider both volatility clustering and heavy tails. Reviews the basics of probability distributions Analyzes a continuous time option pricing model (the so-called exponential Levy model) Defines a discrete time model with volatility clustering and how to price options using Monte Carlo methods Studies two multivariate settings that are suitable to explain joint extreme events Financial Models with Levy Processes and Volatility Clustering is a thorough guide to classical probability distribution methods and brand new methodologies for financial modeling.
Spectral Clustering and Biclustering. Learning Large Graphs and Contingency Tables
Автор: Marianna Bolla
Год издания:
Explores regular structures in graphs and contingency tables by spectral theory and statistical methods This book bridges the gap between graph theory and statistics by giving answers to the demanding questions which arise when statisticians are confronted with large weighted graphs or rectangular arrays. Classical and modern statistical methods applicable to biological, social, communication networks, or microarrays are presented together with the theoretical background and proofs. This book is suitable for a one-semester course for graduate students in data mining, multivariate statistics, or applied graph theory; but by skipping the proofs, the algorithms can also be used by specialists who just want to retrieve information from their data when analysing communication, social, or biological networks. Spectral Clustering and Biclustering: Provides a unified treatment for edge-weighted graphs and contingency tables via methods of multivariate statistical analysis (factoring, clustering, and biclustering). Uses spectral embedding and relaxation to estimate multiway cuts of edge-weighted graphs and bicuts of contingency tables. Goes beyond the expanders by describing the structure of dense graphs with a small spectral gap via the structural eigenvalues and eigen-subspaces of the normalized modularity matrix. Treats graphs like statistical data by combining methods of graph theory and statistics. Establishes a common outline structure for the contents of each algorithm, applicable to networks and microarrays, with unified notions and principles.
Чтобы скачать книгу, отключите блокировку рекламы. Спасибо!