Найти книгу: "Zinc Batteries"


Zinc Batteries Zinc Batteries

Автор: Группа авторов

Год издания: 0000

Principles and Applications of Lithium Secondary Batteries Principles and Applications of Lithium Secondary Batteries

Автор: Jung-Ki Park

Год издания: 

Lithium secondary batteries have been key to mobile electronics since 1990. Large-format batteries typically for electric vehicles and energy storage systems are attracting much attention due to current energy and environmental issues. Lithium batteries are expected to play a central role in boosting green technologies. Therefore, a large number of scientists and engineers are carrying out research and development on lithium secondary batteries. The book is written in a straightforward fashion suitable for undergraduate and graduate students, as well as scientists, and engineers starting out in the field. The chapters in this book have been thoroughly edited by a collective of experts to achieve a cohesive book with a consistent style, level, and philosophy. They cover a wide range of topics, including principles and technologies of key materials such as the cathode, anode, electrolyte, and separator. Battery technologies such as design, manufacturing processes, and evaluation methods as well as applications are addressed. In addition, analytical methods for determining electrochemical and other properties of batteries are also included. Hence, this book is a must-have for everyone interested in obtaining all the basic information on lithium secondary batteries.

Lead-Nickel Electrochemical Batteries Lead-Nickel Electrochemical Batteries

Автор: Genies Sylvie

Год издания: 

The lead-acid accumulator was introduced in the middle of the 19th Century, the diverse variants of nickel accumulators between the beginning and the end of the 20th Century. Although old, these technologies are always very present on numerous markets. Unfortunately they are still not used in optimal conditions, often because of the misunderstanding of the internal electrochemical phenomena. This book will show that batteries are complex systems, made commercially available thanks to considerable amounts of scientific research, empiricism and practical knowledge. However, the design of batteries is not fixed; it is subject to constant developments as a result of user feedback and validation processes which are often long and fastidious. This book attempts to show that it is not possible to consider a family of batteries as having fixed, applicable properties and characteristics whatever the application and the technology used in their manufacture. For this reason, the authors have chosen to present the fundamental electrochemical and chemical phenomena involved in as simple and as clear a way as possible. It is essential to be aware of these mechanisms in order to develop suitable theoretical models. This work will be of particular interest to those working in the field of electrical engineering and to industrialists, the final users of these technologies. It will also be of interest to electrochemists, as experts in lead or nickel batteries are becoming fewer and farther between, and their knowledge and practical skills are steadily being lost. Contents Part 1. Universal Characteristics of Batteries 1. Definitions and Methods of Measurement. Part 2. Lead–Acid Batteries 2. The Operation of Lead–Acid Batteries. 3. Internal Composition and Types of Lead–Acid Batteries. 4. Lead Batteries: Main Characteristics. 5. Manufacturing Starting, Lighting and Ignition Batteries. Part 3. Introduction to Nickel-Based Batteries 6. Nickel–Cadmium Batteries. 7. Nickel–Metal Hydride Batteries. 8. Other Nickel-Based Batteries.

Lithium Batteries Lithium Batteries

Автор: Группа авторов

Год издания: 

Explains the current state of the science and points the way to technological advances First developed in the late 1980s, lithium-ion batteries now power everything from tablet computers to power tools to electric cars. Despite tremendous progress in the last two decades in the engineering and manufacturing of lithium-ion batteries, they are currently unable to meet the energy and power demands of many new and emerging devices. This book sets the stage for the development of a new generation of higher-energy density, rechargeable lithium-ion batteries by advancing battery chemistry and identifying new electrode and electrolyte materials. The first chapter of Lithium Batteries sets the foundation for the rest of the book with a brief account of the history of lithium-ion battery development. Next, the book covers such topics as: Advanced organic and ionic liquid electrolytes for battery applications Advanced cathode materials for lithium-ion batteries Metal fluorosulphates capable of doubling the energy density of lithium-ion batteries Efforts to develop lithium-air batteries Alternative anode rechargeable batteries such as magnesium and sodium anode systems Each of the sixteen chapters has been contributed by one or more leading experts in electrochemistry and lithium battery technology. Their contributions are based on the latest published findings as well as their own firsthand laboratory experience. Figures throughout the book help readers understand the concepts underlying the latest efforts to advance the science of batteries and develop new materials. Readers will also find a bibliography at the end of each chapter to facilitate further research into individual topics. Lithium Batteries provides electrochemistry students and researchers with a snapshot of current efforts to improve battery performance as well as the tools needed to advance their own research efforts.

Fundamentals and Applications of Lithium-ion Batteries in Electric Drive Vehicles Fundamentals and Applications of Lithium-ion Batteries in Electric Drive Vehicles

Автор: Jiuchun Jiang

Год издания: 

A theoretical and technical guide to the electric vehicle lithium-ion battery management system Covers the timely topic of battery management systems for lithium batteries. After introducing the problem and basic background theory, it discusses battery modeling and state estimation. In addition to theoretical modeling it also contains practical information on charging and discharging control technology, cell equalisation and application to electric vehicles, and a discussion of the key technologies and research methods of the lithium-ion power battery management system. The author systematically expounds the theory knowledge included in the lithium-ion battery management systems and its practical application in electric vehicles, describing the theoretical connotation and practical application of the battery management systems. Selected graphics in the book are directly derived from the real vehicle tests. Through comparative analysis of the different system structures and different graphic symbols, related concepts are clear and the understanding of the battery management systems is enhanced. Contents include: key technologies and the difficulty point of vehicle power battery management system; lithium-ion battery performance modeling and simulation; the estimation theory and methods of the lithium-ion battery state of charge, state of energy, state of health and peak power; lithium-ion battery charge and discharge control technology; consistent evaluation and equalization techniques of the battery pack; battery management system design and application in electric vehicles. A theoretical and technical guide to the electric vehicle lithium-ion battery management system Using simulation technology, schematic diagrams and case studies, the basic concepts are described clearly and offer detailed analysis of battery charge and discharge control principles Equips the reader with the understanding and concept of the power battery, providing a clear cognition of the application and management of lithium ion batteries in electric vehicles Arms audiences with lots of case studies Essential reading for Researchers and professionals working in energy technologies, utility planners and system engineers.

Reuse and Recycling of Lithium-Ion Power Batteries Reuse and Recycling of Lithium-Ion Power Batteries

Автор: Guangjin Zhao

Год издания: 

A comprehensive guide to the reuse and recycling of lithium-ion power batteries—fundamental concepts, relevant technologies, and business models Reuse and Recycling of Lithium-Ion Power Batteries explores ways in which retired lithium ion batteries (LIBs) can create long-term, stable profits within a well-designed business operation. Based on a large volume of experimental data collected in the author’s lab, it demonstrates how LIBs reuse can effectively cut the cost of Electric Vehicles (EVs) by extending the service lifetime of the batteries. In addition to the cost benefits, Dr. Guangjin Zhao discusses how recycling and reuse can significantly reduce environmental and safety hazards, thus complying with the core principles of environment protection: recycle, reuse and reduce. Offering coverage of both the fundamental theory and applied technologies involved in LIB reuse and recycling, the book's contents are based on the simulated and experimental results of a hybrid micro-grid demonstration project and recycling system. In the opening section on battery reuse, Dr. Zhao introduces key concepts, including battery dismantling, sorting, second life prediction, re-packing, system integration and relevant technologies. He then builds on that foundation to explore advanced topics, such as resource recovery, harmless treatment, secondary pollution control, and zero emissions technologies. Reuse and Recycling of Lithium-Ion Power Batteries: • Provides timely, in-depth coverage of both the reuse and recycling aspects of lithium-ion batteries • Is based on extensive simulation and experimental research performed by the author, as well as an extensive review of the current literature on the subject • Discusses the full range of critical issues, from battery dismantling and sorting to secondary pollution control and zero emissions technologies • Includes business models and strategies for secondary use and recycling of power lithium-ion batteries Reuse and Recycling of Lithium-Ion Power Batteries is an indispensable resource for researchers, engineers, and business professionals who work in industries involved in energy storage systems and battery recycling, especially with the manufacture and use (and reuse) of lithium-ion batteries. It is also a valuable supplementary text for advanced undergraduates and postgraduate students studying energy storage, battery recycling, and battery management.