Cyclodextrins in Chromatography
Автор: Tibor Cserhati
Год издания: 0000
Cyclodextrins in Pharmaceutics, Cosmetics, and Biomedicine. Current and Future Industrial Applications
Автор: Erem Bilensoy
Год издания:
Cyclodextrins in Pharmaceutics, Cosmetics, and Biomedicine covers a wide range of knowledge on cyclodextrins, from an overview of molecular and supramolecular aspects of cyclodextrin physicochemistry, to the latest outcomes in cyclodextrin use and future possibilities in the employment of these systems. This book focuses on the derivatives and physicochemical and biological properties of cyclodextrins, and considers drug delivery through topical, mucosal, and oral via cyclodextrin complexes.
Light Scattering, Size Exclusion Chromatography and Asymmetric Flow Field Flow Fractionation. Powerful Tools for the Characterization of Polymers, Proteins and Nanoparticles
Автор: Stepan Podzimek
Год издания:
A comprehensive, practical approach to three powerful methods of polymer analysis and characterization This book serves as a complete compendium of three important methods widely used for the characterization of synthetic and natural polymers—light scattering, size exclusion chromatography (SEC), and asymmetric flow field flow fractionation (A4F). Featuring numerous up-to-date examples of experimental results obtained by light scattering, SEC, and A4F measurements, Light Scattering, Size Exclusion Chromatography and Asymmetric Flow Field Flow Fractionation takes an all-in-one approach to deliver a complete and thorough explanation of the principles, theories, and instrumentation needed to characterize polymers from the viewpoint of their molar mass distribution, size, branching, and aggregation. This comprehensive resource: Is the only book gathering light scattering, size exclusion chromatography, and asymmetric flow field flow fractionation into a single text Systematically compares results of size exclusion chromatography with results of asymmetric flow field flow fractionation, and how these two methods complement each other Provides in-depth guidelines for reproducible and correct determination of molar mass and molecular size of polymers using SEC or A4F coupled with a multi-angle light scattering detector Offers a detailed overview of the methodology, detection, and characterization of polymer branching Light Scattering, Size Exclusion Chromatography and Asymmetric Flow Field Flow Fractionation should be of great interest to all those engaged in the polymer analysis and characterization in industrial and university research, as well as in manufacturing quality control laboratories. Both beginners and experienced can confidently rely on this volume to confirm their own understanding or to help interpret their results.
Comprehensive Chromatography in Combination with Mass Spectrometry
Автор: Luigi Mondello
Год издания:
This book provides a detailed description of various multidimensional chromatographic separation techniques. The editor first provides an introduction to the area and then dives right into the various complex separation techniques. While still not used routinely comprehensive chromatography techniques will help acquaint the readers with the fundamentals and possible benefits of multi-dimensional separations coupled with mass spectrometry. The topics include a wide range of material that will appease all interested in either entering the field of multidimensional chromatography and those looking to gain a better understanding of the topic.
Ultra-High Performance Liquid Chromatography and Its Applications
Автор: Q. Xu Alan
Год издания:
Explores both the benefits and limitations of new UHPLC technology High performance liquid chromatography (HPLC) has been widely used in analytical chemistry and biochemistry to separate, identify, and quantify compounds for decades. The science of liquid chromatography, however, was revolutionized a few years ago with the advent of ultra-high performance liquid chromatography (UHPLC), which made it possible for researchers to analyze sample compounds with greater speed, resolution, and sensitivity. Ultra-High Performance Liquid Chromatography and Its Applications enables readers to maximize the performance of UHPLC as well as develop UHPLC methods tailored to their particular research needs. Readers familiar with HPLC methods will learn how to transfer these methods to a UHPLC platform and vice versa. In addition, the book explores a variety of UHPLC applications designed to support research in such fields as pharmaceuticals, food safety, clinical medicine, and environmental science. The book begins with discussions of UHPLC method development and method transfer between HPLC and UHPLC platforms. It then examines practical aspects of UHPLC. Next, the book covers: Coupling UHPLC with mass spectrometry Potential of shell particles in fast liquid chromatography Determination of abused drugs in human biological matrices Analyses of isoflavones and flavonoids Therapeutic protein characterization Analysis of illicit drugs The final chapter of the book explores the use of UHPLC in drug metabolism and pharmacokinetics studies for traditional Chinese medicine. With its frank discussions of UHPLC's benefits and limitations, Ultra-High Performance Liquid Chromatography and Its Applications equips analytical scientists with the skills and knowledge needed to take full advantage of this new separation technology.
Temperature-Programmed Gas Chromatography
Автор: Leonid Blumberg M.
Год издания:
This book provides a comprehensive up-to-date overview of temperature-programmed gas chromatography (GC). The first part of the book introduces the reader to the basics concepts of GC, as well as the key properties of GC columns. The second part describes the mathematical and physical background of GC. In the third part, different aspects in the formation of a chromatogram are discussed, including retention times, peak spacing and peak widths. An invaluable reference for any chromatographer and analytical chemist, it provides all the answers to questions like: * At what temperature does a solute elute in a temperature-programmed analysis? * What is the value of the retention factor of eluting solute? * How wide are the peaks? * How large is the time distance between two peaks? * How do all these parameters depend on the heating rate?