Ветвящиеся интегралы
Автор: Васильев В. А.
Год издания: 2000
Монография находится на стыке нескольких классических разделов математики: теории особенностей, топологии, алгебраической и интегральной геометрии, комплексного анализа, уравнений математической физики.
Она содержит введение в теорию Пикара-Лефшеца и локальную теорию особенностей, которые управляют качественным поведением функций, заданных интегральными преобразованиями. Приводятся оригинальные приложения к проблемам интегральной геометрии, теории гиперболических операторов в частных производных, теории потенциала и обобщениям гипергеометрических функции.
Для студентов, аспирантов и научных работников, специализирующихся в области комплексного анализа, уравнений математической физики, теории особенностей, алгебраической геометрии, интегральной геометрии и топологии.
Кратные и криволинейные интегралы. Элементы теории поля
Автор: Валерии Гаврилов
Год издания:
Книга является седьмым выпуском комплекса учебников «Математика в техническом университете». Она знакомит читателя с кратными, криволинейными и поверхностными интегралами и с методами их вычисления. В ней уделено внимание приложениям этих типов интегралов, приведены примеры физического, механического и технического содержания. В заключительных главах изложены элементы теории поля и векторного анализа. Содержание учебника соответствует курсу лекций, который авторы читают в МГТУ им. Н.Э. Баумана. Для студентов технических университетов. Может быть полезен преподавателям, аспирантам и инженерам.
Специальные функции. Производные, интегралы, ряды и другие формулы. Справочник
Автор: Юрий Брычков
Год издания:
В книге приведены производные, неопределенные и определенные интегралы, конечные суммы, ряды и другие формулы, содержащие специальные функции. Она включает в основном новые результаты и является ценным дополнением к существующим справочным руководствам. Книга предназначена для широкого круга специалистов в различных областях науки и техники, а также для студентов высших учебных заведений. Издание осуществлено при поддержке Российского фонда фундаментальных исследований по проекту 05-01-14003д
Локальные времена, симметричные интегралы и стохастический анализ
Автор: Фарит Насыров
Год издания:
Книга посвящена применению методов теории функций вещественной переменной и теории дифференциальных уравнений в стохастическом анализе. Материал охватывает общую теорию локальных времен для детерминированных функций, теорию симметричных интегралов и теорию детерминированных аналогов стохастических дифференциальных уравнений. Предложены новые методы нахождения решений стохастических дифференциальных уравнений. Приведено решение задачи оптимальной фильтрации нелинейных одномерных диффузионных процессов, рассмотрена задача оптимального управления диффузионным процессом с потраекторным целевым функционалом. Для научных работников в области математики и смежных областях, а также для аспирантов и студентов математических специальностей. Издание осуществлено при поддержке Российского фонда фундаментальных исследований по проектам 10-01-07038-д, 10-01-02000-э-д