Extremophiles
Автор: Om V. Singh
Год издания:
Explores the utility and potential of extremophiles in sustainability and biotechnology Many extremophilic bio-products are already used as life-saving drugs. Until recently, however, the difficulty of working with these microbes has discouraged efforts to develop extremophilic microbes as potential drug reservoirs of the future. Recent technological advances have opened the door to exploring these organisms anew as sources of products that might prove useful in clinical and environmental biotechnology and drug development. Extremophiles features outstanding articles by expert scientists who shed light on broad-ranging areas of progress in the development of smart therapeutics for multiple disease types and products for industrial use. It bridges technological gaps, focusing on critical aspects of extremolytes and the mechanisms regulating their biosynthesis that are relevant to human health and bioenergy, including value-added products of commercial significance as well as other potentially viable products. This groundbreaking guide: Introduces the variety of extremophiles and their extremolytes including extremozymes Provides an overview of the methodologies used to acquire extremophiles Reviews the literature on the diversity of extremophiles Offers tools and criteria for data interpretation of various extremolytes/extremozymes Discusses experimental design problems associated with extremophiles and their therapeutic implications Explores the challenges and possibilities of developing extremolytes for commercial purposes Explains the FDA's regulations on certain microbial bio-products that will be of interest to potential industrialists Extremophiles is an immensely useful resource for graduate students and researchers in biotechnology, clinical biotechnology, microbiology, and applied microbiology.
Extremophile as Astrobiological Models
Автор: Группа авторов
Год издания:
The data in this book are new or updated, and will serve also as Origin of Life and evolutionary studies. Endospores of bacteria have a long history of use as model organisms in astrobiology, including survival in extreme environments and interplanetary transfer of life. Numerous other bacteria as well as archaea, lichens, fungi, algae and tiny animals (tardigrades, or water bears) are now being investigated for their tolerance to extreme conditions in simulated or real space environments. Experimental results from exposure studies on the International Space Station and space probes for up to 1.5 years are presented and discussed. Suggestions for extaterrestrial energy sources are also indicated.