Impedance Spectroscopy
Автор: Evgenij Barsoukov
Год издания: 0000
A skillful balance of theoretical considerations and practical know-how Backed by a team of expert contributors, the Second Edition of this highly acclaimed publication brings a solid understanding of impedance spectroscopy to students, researchers, and engineers in physical chemistry, electrochemistry, and physics. Starting with general principles, the book moves on to explain in detail practical applications for the characterization of materials in electrochemistry, semiconductors, solid electrolytes, corrosion, solid-state devices, and electrochemical power sources. The book covers all of the topics needed to help readers identify whether impedance spectroscopy may be an appropriate method for their particular research problem. The book helps readers quickly grasp how to apply their new knowledge of impedance spectroscopy methods to their own research problems through the use of unique features such as: * Step-by-step instructions for setting up experiments and then analyzing the results * Theoretical considerations for dealing with modeling, equivalent circuits, and equations in the complex domain * Best measurement methods for particular systems and alerts to potential sources of errors * Equations for the most widely used impedance models * Figures depicting impedance spectra of typical materials and devices * Extensive references to the scientific literature for more information on particular topics and current research This Second Edition incorporates the results of the last two decades of research on the theories and applications of impedance spectroscopy. Most notably, it includes new chapters on batteries, supercapacitors, fuel cells, and photochromic materials. A new chapter on commercially available measurement systems reflects the emergence of impedance spectroscopy as a mainstream research tool. With its balanced focus on both theory and practical problem solving, Impedance Spectroscopy: Theory, Experiment, and Applications, Second Edition serves as an excellent graduate-level textbook as well as a hands-on guide and reference for researchers and engineers.
Impedance Spectroscopy. Applications to Electrochemical and Dielectric Phenomena
Автор: Vadim Lvovich F.
Год издания:
This book presents a balance of theoretical considerations and practical problem solving of electrochemical impedance spectroscopy. This book incorporates the results of the last two decades of research on the theories and applications of impedance spectroscopy, including more detailed reviews of the impedance methods applications in industrial colloids, biomedical sensors and devices, and supercapacitive polymeric films. The book covers all of the topics needed to help readers quickly grasp how to apply their knowledge of impedance spectroscopy methods to their own research problems. It also helps the reader identify whether impedance spectroscopy may be an appropriate method for their particular research problem. This includes understanding how to correctly make impedance measurements, interpret the results, compare results with expected previously published results form similar chemical systems, and use correct mathematical formulas to verify the accuracy of the data. Unique features of the book include theoretical considerations for dealing with modeling, equivalent circuits, and equations in the complex domain, review of impedance instrumentation, best measurement methods for particular systems and alerts to potential sources of errors, equations and circuit diagrams for the most widely used impedance models and applications, figures depicting impedance spectra of typical materials and devices, extensive references to the scientific literature for more information on particular topics and current research, and a review of related techniques and impedance spectroscopy modifications.
Sound Propagation. An Impedance Based Approach
Автор: Yang-Hann Kim
Год издания:
In Sound Propagation: An Impedance Based Approach, Professor Yang-Hann Kim introduces acoustics and sound fields by using the concept of impedance. Kim starts with vibrations and waves, demonstrating how vibration can be envisaged as a kind of wave, mathematically and physically. One-dimensional waves are used to convey the fundamental concepts. Readers can then understand wave propagation in terms of characteristic and driving point impedance. The essential measures for acoustic waves, such as dB scale, octave scale, acoustic pressure, energy, and intensity, are explained. These measures are all realized by one-dimensional examples, which provide mathematically simplest but clear enough physical insights. Kim then moves on to explaining waves on a flat surface of discontinuity, demonstrating how propagation characteristics of waves change in space when there is a distributed impedance mismatch. Next is a chapter on radiation, scattering, and diffraction, where Kim shows how these topics can be explained in a unified way, by seeing the changes of waves due to spatially distributed impedance. Lastly, Kim covers sound in closed space, which is considered to be a space that is surrounded by spatially distributed impedance, and introduces two spaces: acoustically large and small space. The bulk of the book is concerned with introducing core fundamental concepts, but the appendices are included as the essentials as well to cover other important topics to extend learning. Offers a less mathematically-intensive means to understand the subject matter Provides an excellent launching point for more advanced study or for review of the basics Based on classroom tested materials developed over the course of two decades Companion site for readers, containing animations and MATLAB code downloads Videos and impedance data available from the author's website Presentation slides available for instructor use Sound Propagation is geared towards graduate students and advanced undergraduates in acoustics, audio engineering, and noise control engineering. Practicing engineers and researchers in audio engineering and noise control, or students in engineering and physics disciplines, who want to gain an understanding of sound and vibration concepts, will also find the book to be a helpful resource.
X-ray Photoelectron Spectroscopy. An introduction to Principles and Practices
Автор: Paul van der Heide
Год издания:
This book introduces readers interested in the field of X-ray Photoelectron Spectroscopy (XPS) to the practical concepts in this field. The book first introduces the reader to the language and concepts used in this field and then demonstrates how these concepts are applied. Including how the spectra are produced, factors that can influence the spectra (all initial and final state effects are discussed), how to derive speciation, volume analysed and how one controls this (includes depth profiling), and quantification along with background substraction and curve fitting methodologies. This is presented in a concise yet comprehensive manner and each section is prepared such that they can be read independently of each other, and all equations are presented using the most commonly used units. Greater emphasis has been placed on spectral understanding/interpretation. For completeness sake, a description of commonly used instrumentation is also presented. Finally, some complementary surface analytical techniques and associated concepts are reviewed for comparative purposes in stand-alone appendix sections.
Practical Raman Spectroscopy. An Introduction
Автор: Peter Vandenabeele
Год издания:
This text offers an open-learning approach to Raman spectroscopy providing detail on instrumentation, applications and discussions questions throughout the book. It provides a valuable guide to assist with teaching Raman spectroscopy which is gaining attention in (analytical) chemistry, and as a consequence, teaching programs have followed. Today, education in Raman spectroscopy is often limited to theoretical aspects (e.g. selection rules), but practical aspects are usually disregarded. With these course notes, the author hopes to fill this gap and include information about Raman instrumentation and how it is interpreted. Provides a user-friendly text that tackles the theoretical background, and offers everyday tips for common practice Raman instrumentation and practical aspects, which are sometimes overlooked, are covered Appropriate for students, and includes summaries, text boxes, illustrating the ideas with examples from research literature or providing background information or links with other courses Written with an open-learning approach, this book will be ideal for use as a self-study guide or as the basis of a taught course with discussion and self-assessment questions throughout the text Includes a comprehensive bibliography to guide the reader to more specialized texts and sources.
Computational Strategies for Spectroscopy. from Small Molecules to Nano Systems
Автор: Vincenzo Barone
Год издания:
Computational spectroscopy is a rapidly evolving field that is becoming a versatile and widespread tool for the assignment of experimental spectra and their interpretation as related to chemical physical effects. This book is devoted to the most significant methodological contributions in the field, and to the computation of IR, UV-VIS, NMR and EPR spectral parameters with reference to the underlying vibronic and environmental effects. Each section starts with a chapter written by an experimental spectroscopist dealing with present challenges in the different fields; comprehensive coverage of conventional and advanced spectroscopic techniques is provided by means of dedicated chapters written by experts. Computational chemists, analytical chemists and spectroscopists, physicists, materials scientists, and graduate students will benefit from this thorough resource.