Nonlinear Mesoscopic Elasticity
Автор: Paul Johnson A.
Год издания: 0000
This handbook brings together a great deal of new data on the static and dynamic elastic properties of granular and other composite material. The authors are at the very center of today's research and present new and imported theoretical tools that have enabled our current understanding of the complex behavior of rocks. There are three central themes running throughout the presentation: ? Rocks as the prototypical material for defining a class of materials ? The PM space model as a useful theoretical construct for developing a phenomenology ? A sequence of refined analysis methods. This suite of new methods for both recording and analyzing data is more than a single framework for interpretation, it is also a toolbox for the experimenter. A comprehensive and systematic book of utmost interest to anybody involved in non-destructive testing, civil engineering, and geophysics.
Optical Communication with Chaotic Lasers. Applications of Nonlinear Dynamics and Synchronization
Автор: Atsushi Uchida
Год издания:
Starting with an introduction to the fundamental physics in chaotic instabilities in laser systems, this comprehensive and unified reference goes on to present the techniques and technology of synchronization of chaos in coupled lasers, as well as the many applications to lasers and optics, communications, security and information technology. Throughout, it presents the current state of knowledge, including encoding/decoding techniques, performance of chaotic communication systems, random number generation, and novel communication technologies.
Nonlinear Distortion in Wireless Systems. Modeling and Simulation with MATLAB
Автор: Khaled Gharaibeh M.
Год издания:
This book covers the principles of modeling and simulation of nonlinear distortion in wireless communication systems with MATLAB simulations and techniques In this book, the author describes the principles of modeling and simulation of nonlinear distortion in single and multichannel wireless communication systems using both deterministic and stochastic signals. Models and simulation methods of nonlinear amplifiers explain in detail how to analyze and evaluate the performance of data communication links under nonlinear amplification. The book addresses the analysis of nonlinear systems with stochastic inputs and establishes the performance metrics of communication systems with regard to nonlinearity. In addition, the author also discusses the problem of how to embed models of distortion in system-level simulators such as MATLAB and MATLAB Simulink and provides practical techniques that professionals can use on their own projects. Finally, the book explores simulation and programming issues and provides a comprehensive reference of simulation tools for nonlinearity in wireless communication systems. Key Features: Covers the theory, models and simulation tools needed for understanding nonlinearity and nonlinear distortion in wireless systems Presents simulation and modeling techniques for nonlinear distortion in wireless channels using MATLAB Uses random process theory to develop simulation tools for predicting nonlinear system performance with real-world wireless communication signals Focuses on simulation examples of real-world communication systems under nonlinearity Includes an accompanying website containing MATLAB code This book will be an invaluable reference for researchers, RF engineers, and communication system engineers working in the field. Graduate students and professors undertaking related courses will also find the book of interest.
Nonlinear System Identification. NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains
Автор: Stephen Billings A.
Год издания:
Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains describes a comprehensive framework for the identification and analysis of nonlinear dynamic systems in the time, frequency, and spatio-temporal domains. This book is written with an emphasis on making the algorithms accessible so that they can be applied and used in practice. Includes coverage of: The NARMAX (nonlinear autoregressive moving average with exogenous inputs) model The orthogonal least squares algorithm that allows models to be built term by term where the error reduction ratio reveals the percentage contribution of each model term Statistical and qualitative model validation methods that can be applied to any model class Generalised frequency response functions which provide significant insight into nonlinear behaviours A completely new class of filters that can move, split, spread, and focus energy The response spectrum map and the study of sub harmonic and severely nonlinear systems Algorithms that can track rapid time variation in both linear and nonlinear systems The important class of spatio-temporal systems that evolve over both space and time Many case study examples from modelling space weather, through identification of a model of the visual processing system of fruit flies, to tracking causality in EEG data are all included to demonstrate how easily the methods can be applied in practice and to show the insight that the algorithms reveal even for complex systems NARMAX algorithms provide a fundamentally different approach to nonlinear system identification and signal processing for nonlinear systems. NARMAX methods provide models that are transparent, which can easily be analysed, and which can be used to solve real problems. This book is intended for graduates, postgraduates and researchers in the sciences and engineering, and also for users from other fields who have collected data and who wish to identify models to help to understand the dynamics of their systems.
Analytical Routes to Chaos in Nonlinear Engineering
Автор: Albert C. J. Luo
Год издания:
Nonlinear problems are of interest to engineers, physicists and mathematicians and many other scientists because most systems are inherently nonlinear in nature. As nonlinear equations are difficult to solve, nonlinear systems are commonly approximated by linear equations. This works well up to some accuracy and some range for the input values, but some interesting phenomena such as chaos and singularities are hidden by linearization and perturbation analysis. It follows that some aspects of the behavior of a nonlinear system appear commonly to be chaotic, unpredictable or counterintuitive. Although such a chaotic behavior may resemble a random behavior, it is absolutely deterministic. Analytical Routes to Chaos in Nonlinear Engineering discusses analytical solutions of periodic motions to chaos or quasi-periodic motions in nonlinear dynamical systems in engineering and considers engineering applications, design, and control. It systematically discusses complex nonlinear phenomena in engineering nonlinear systems, including the periodically forced Duffing oscillator, nonlinear self-excited systems, nonlinear parametric systems and nonlinear rotor systems. Nonlinear models used in engineering are also presented and a brief history of the topic is provided. Key features: Considers engineering applications, design and control Presents analytical techniques to show how to find the periodic motions to chaos in nonlinear dynamical systems Systematically discusses complex nonlinear phenomena in engineering nonlinear systems Presents extensively used nonlinear models in engineering Analytical Routes to Chaos in Nonlinear Engineering is a practical reference for researchers and practitioners across engineering, mathematics and physics disciplines, and is also a useful source of information for graduate and senior undergraduate students in these areas.
Nonlinear Effects in Optical Fibers
Автор: Mario Ferreira F.
Год издания:
This book will provide insight into the principles and applications of nonlinear effects in fibers for students, researchers, and developers who have a basic understanding of electromagnetic theory under their belts. It will explore the physics, limitations, applications, and research results surrounding nonlinear effects in fiber optics. In addition to communications, optical fibers are already used in medical procedures, automobiles, and aircraft and are expected to have many other applications. This will expand the range of industry workers who will find a book of this type useful.