Cyclic Separating Reactors
Автор: Takashi Aida
Год издания: 0000
Cyclic Separating Reactors is a critical examination of the literature covering periodically operated separating reactors incorporating an adsorbent as well as a catalyst, aiming to establish the magnitude of performance improvement available with this type of reactor compared to systems in which the reactor and separator are separate units. The adequacy of present models is considered by comparison of simulation and experimental studies, and gaps in understanding or experimental verification of model predictions are identified. Separating reactors, including chromatographic reactors and pressure swing reactors, are an expeditious means of process intensification, reducing both capital and operating costs, particularly where reactions are equilibrium limited. For this reason, cyclically operating separating reactors are attracting considerable interest across the range of chemical manufacturing industries, so this book is a timely and valuable summary of the literature available to the engineer. Following an introduction to multifunctional reactors and to periodic reactor operation, Cyclic Separating Reactors covers both chromatographic and pressure swing adsorption reactors, and is written for chemical engineers in both industry and academe. First book to critically examine the literature surrounding Cyclically Operating Separating Reactors providing a straightforward entry to, and detailed appraisal of, the literature, so the reader does not have to engage in an expensive and time consuming literature review Evaluates current models and understanding to give the engineer clear information on what performance can be expected of these reactors and where current information needs to be augmented when designing systems for commercial operation.
Modeling and Simulation of Catalytic Reactors for Petroleum Refining
Автор: Jorge Ancheyta
Год издания:
Modeling and Simulation of Catalytic Reactors for Petroleum Refining deals with fundamental descriptions of the main conversion processes employed in the petroleum refining industry: catalytic hydrotreating, catalytic reforming, and fluid catalytic cracking. Common approaches for modeling of catalytic reactors for steady-state and dynamic simulations are also described and analyzed. Aspects such as thermodynamics, reaction kinetics, process variables, process scheme, and reactor design are discussed in detail from both research and commercial points of view. Results of simulation with the developed models are compared with those determined at pilot plant scale as well as commercial practice. Kinetics data used in the reactor model are either taken from the literature or obtained under controlled experiments at the laboratory.
Cyclic-Nucleotide Phosphodiesterases in the Central Nervous System. From Biology to Drug Discovery
Автор: West Anthony R.
Год издания:
This book reviews advances in understanding phosphodiesterases within the central nervous system and their therapeutic applications. A range of expert authors from both academia and industry describe these, then focus on the areas of greatest scientific and medical interest to provide more detailed coverage. Therapeutic and drug discovery applications are covered for diseases including Alzheimer's, Parkinson's, schizophrenia, erectile dysfunction, and spinal cord injuries. There is also a chapter on drug discovery tools such as in vitro assays and X-ray structures for medicinal chemistry studies.
Name Reactions for Carbocyclic Ring Formations
Автор: Corey E. J.
Год издания:
This book continues the well-established and authoritative series on name reactions in organic chemistry by focusing on name reactions on ring formation. Ring formating reactions have found widespread applicability in traditional organic synthesis, medicinal/pharmaceuticals, agricultural, fine chemicals, and of late, especially in polymer science.
Name Reactions in Heterocyclic Chemistry II
Автор: Corey E. J.
Год издания:
The up-to-DATE guide to name reactions in heterocyclic chemistry Name Reactions in Heterocyclic Chemistry II presents a comprehensive treatise on name reactions in heterocyclic chemistry, one of the most exciting—and important—fields within organic chemistry today. The book not only covers fresh ground, but also provides extensive information on new and/or expanded reactions in: Three- and four-membered heterocycles Five-membered heterocycles (pyrroles and pyrrolidines, indoles, furans, thiophenes, and oxazoles) Six-membered heterocycles, including pyridines, quinolines, and isoquinolines Featuring contributions from the leading authorities in heterocyclic chemistry. Each section includes a description of the given reaction, as well as the relevant historical perspective, mechanism, variations and improvements, synthetic utilities, experimental details, and references to the current primary literature. The reactions covered in Name Reactions in Heterocyclic Chemistry have been widely adopted in all areas of organic synthesis, from the medicinal/pharmaceutical field, to agriculture, to fine chemicals, and the book brings the most cutting-edge knowledge to practicing synthetic chemists and students, along with the tools needed to synthesize new and useful molecules.
Design and Control of Distillation Systems for Separating Azeotropes
Автор: Luyben William L.
Год издания:
Hands-on guidance for the design, control, and operation of azeotropic distillation systems Following this book's step-by-step guidance, readers learn to master tested and proven methods to overcome a major problem in chemical processing: the distillation and separation of azeotropes. Practical in focus, the book fully details the design, control, and operation of azeotropic distillation systems, using rigorous steady-state and dynamic simulation tools. Design and Control of Distillation Systems for Separating Azeotropes is divided into five parts: Fundamentals and tools Separations without adding other components Separations using light entrainer (heterogeneous azeotropic distillation) Separations using heavy entrainer (extractive distillation) Other ways for separating azeotropes The distillation methods presented cover a variety of important industrial chemical systems, including the processing of biofuels. For most of these chemical systems, the authors explain how to achieve economically optimum steady-state designs. Moreover, readers learn how to implement practical control structures that provide effective load rejection to manage disturbances in throughput and feed composition. Trade-offs between steady-state energy savings and dynamic controllability are discussed, helping readers design and implement the distillation system that best meets their particular needs. In addition, economic and dynamic comparisons between alternative methods are presented, including an example of azeotropic distillation versus extractive distillation for the isopropanol/water system. With its focus on practical solutions, Design and Control of Distillation Systems for Separating Azeotropes is ideal for engineers facing a broad range of azeotropic separation problems. Moreover, this book is recommended as a supplemental text for undergraduate and graduate engineering courses in design, control, mass transfer, and bio-processing.