Statistics for Engineers
Автор: Группа авторов
Год издания: 0000
This practical text is an essential source of information for those wanting to know how to deal with the variability that exists in every engineering situation. Using typical engineering data, it presents the basic statistical methods that are relevant, in simple numerical terms. In addition, statistical terminology is translated into basic English. In the past, a lack of communication between engineers and statisticians, coupled with poor practical skills in quality management and statistical engineering, was damaging to products and to the economy. The disastrous consequence of setting tight tolerances without regard to the statistical aspect of process data is demonstrated. This book offers a solution, bridging the gap between statistical science and engineering technology to ensure that the engineers of today are better equipped to serve the manufacturing industry. Inside, you will find coverage on: the nature of variability, describing the use of formulae to pin down sources of variation; engineering design, research and development, demonstrating the methods that help prevent costly mistakes in the early stages of a new product; production, discussing the use of control charts, and; management and training, including directing and controlling the quality function. The Engineering section of the index identifies the role of engineering technology in the service of industrial quality management. The Statistics section identifies points in the text where statistical terminology is used in an explanatory context. Engineers working on the design and manufacturing of new products find this book invaluable as it develops a statistical method by which they can anticipate and resolve quality problems before launching into production. This book appeals to students in all areas of engineering and also managers concerned with the quality of manufactured products. Academic engineers can use this text to teach their students basic practical skills in quality management and statistical engineering, without getting involved in the complex mathematical theory of probability on which statistical science is dependent.
Applied Statistics and the SAS Programming Language
Автор: Ronald P. Cody, Jeffrey K. Smith
Год издания:
This book is intended to provide the applied researcher with the capacity to perform statistical analyses with SAS software without wading through pages of technical documentation. The researcher is provided with the necessary SAS statements to run programs for most of the commonly used statistics, explanations of the computer output, interpretations of results, and examples of how to construct tables and write up results for reports and journal articles.
Статистика туризма = Tourism statistics
Автор: Татьяна Карманова
Год издания:
Раскрыты основополагающие принципы и сущность статистики туризма. Детально рассмотрены предмет, задачи и система показателей статистики туризма, методология статистической оценки и анализ развития международного и внутреннего туризма, а также современные направления развития статистики туризма в мире и России. Соответствует Федеральному государственному образовательному стандарту высшего профессионального образования третьего поколения. Для студентов бакалавриата, магистратуры, аспирантов, преподавателей высших учебных заведений, слушателей системы послевузовского образования, а также бухгалтеров, аудиторов, экономистов, менеджеров предприятий туристской индустрии.
English for Bio-Medical Engineers (self-study competence development)
Автор: Е. В. Дмитриева
Год издания:
Учебное пособие состоит из 10 разделов и 2 приложений, в которых представлены аутентичные тексты биоинженерной тематики на английском языке, грамматический и лексический справочный материал, направленный на развитие аналитических, переводческих и коммуникативных умений студентов в области инженерного дела.
Records of a Family of Engineers
Автор: Роберт Льюис Стивенсон
Год издания:
Прогнозное моделирование в IBM SPSS Statistics, R и Python. Метод деревьев решений и случайный лес
Автор: Артем Груздев
Год издания:
Данная книга представляет собой практическое руководство по применению метода деревьев решений и случайного леса для задач сегментации, классификации и прогнозирования. Каждый раздел книги сопровождается практическим примером. Кроме того, книга содержит программный код SPSS Syntax, R и Python, позволяющий полностью автоматизировать процесс построения прогнозных моделей. Автором обобщены лучшие практики использования деревьев решений и случайного леса от таких компаний, как Citibank N.A., Transunion и DBS Bank. Издание будет интересно маркетологам, риск-аналитикам и другим специалистам, занимающимся разработкой и внедрением прогнозных моделей.