Metaheuristics
Автор: Группа авторов
Год издания: 0000
A unified view of metaheuristics This book provides a complete background on metaheuristics and shows readers how to design and implement efficient algorithms to solve complex optimization problems across a diverse range of applications, from networking and bioinformatics to engineering design, routing, and scheduling. It presents the main design questions for all families of metaheuristics and clearly illustrates how to implement the algorithms under a software framework to reuse both the design and code. Throughout the book, the key search components of metaheuristics are considered as a toolbox for: Designing efficient metaheuristics (e.g. local search, tabu search, simulated annealing, evolutionary algorithms, particle swarm optimization, scatter search, ant colonies, bee colonies, artificial immune systems) for optimization problems Designing efficient metaheuristics for multi-objective optimization problems Designing hybrid, parallel, and distributed metaheuristics Implementing metaheuristics on sequential and parallel machines Using many case studies and treating design and implementation independently, this book gives readers the skills necessary to solve large-scale optimization problems quickly and efficiently. It is a valuable reference for practicing engineers and researchers from diverse areas dealing with optimization or machine learning; and graduate students in computer science, operations research, control, engineering, business and management, and applied mathematics.
Metaheuristics for Logistics
Автор: Laurent Deroussi
Год издания:
This book describes the main classical combinatorial problems that can be encountered when designing a logistics network or driving a supply chain. It shows how these problems can be tackled by metaheuristics, both separately and using an integrated approach. A huge number of techniques, from the simplest to the most advanced ones, are given for helping the reader to implement efficient solutions that meet its needs. A lot of books have been written about metaheuristics (methods for solving hard optimization problems) and supply chain management (the field in which we find a huge number of combinatorial optimization problems) in the last decades. So, the main reason of this book is to describe how these methods can be implemented for this class of problems.
Metaheuristics for Big Data
Автор: Clarisse Dhaenens
Год издания:
Big Data is a new field, with many technological challenges to be understood in order to use it to its full potential. These challenges arise at all stages of working with Big Data, beginning with data generation and acquisition. The storage and management phase presents two critical challenges: infrastructure, for storage and transportation, and conceptual models. Finally, to extract meaning from Big Data requires complex analysis. Here the authors propose using metaheuristics as a solution to these challenges; they are first able to deal with large size problems and secondly flexible and therefore easily adaptable to different types of data and different contexts. The use of metaheuristics to overcome some of these data mining challenges is introduced and justified in the first part of the book, alongside a specific protocol for the performance evaluation of algorithms. An introduction to metaheuristics follows. The second part of the book details a number of data mining tasks, including clustering, association rules, supervised classification and feature selection, before explaining how metaheuristics can be used to deal with them. This book is designed to be self-contained, so that readers can understand all of the concepts discussed within it, and to provide an overview of recent applications of metaheuristics to knowledge discovery problems in the context of Big Data.
Metaheuristics for String Problems in Bio-informatics
Автор: Christian Blum
Год издания:
So-called string problems are abundant in bioinformatics and computational biology. New optimization problems dealing with DNA or protein sequences are constantly arising and researchers are highly in need of efficient optimization techniques for solving them. One obstacle for optimization practitioners is the atypical nature of these problems which require an interdisciplinary approach in order to solve them efficiently and accurately.
Metaheuristics for Vehicle Routing Problems
Автор: Nacima Labadie
Год издания:
This book is dedicated to metaheuristics as applied to vehicle routing problems. Several implementations are given as illustrative examples, along with applications to several typical vehicle routing problems. As a first step, a general presentation intends to make the reader more familiar with the related field of logistics and combinatorial optimization. This preamble is completed with a description of significant heuristic methods classically used to provide feasible solutions quickly, and local improvement moves widely used to search for enhanced solutions. The overview of these fundamentals allows appreciating the core of the work devoted to an analysis of metaheuristic methods for vehicle routing problems. Those methods are exposed according to their feature of working either on a sequence of single solutions, or on a set of solutions, or even by hybridizing metaheuristic approaches with others kind of methods.
Metaheuristics for Air Traffic Management
Автор: Nicolas Durand
Год издания:
Air Traffic Management involves many different services such as Airspace Management, Air Traffic Flow Management and Air Traffic Control. Many optimization problems arise from these topics and they generally involve different kinds of variables, constraints, uncertainties. Metaheuristics are often good candidates to solve these problems. The book models various complex Air Traffic Management problems such as airport taxiing, departure slot allocation, en route conflict resolution, airspace and route design. The authors detail the operational context and state of art for each problem. They introduce different approaches using metaheuristics to solve these problems and when possible, compare their performances to existing approaches