Найти книгу: "Modular Multilevel Converters"


Modular Multilevel Converters Modular Multilevel Converters

Автор: Bin Wu

Год издания: 0000

An invaluable academic reference for the area of high-power converters, covering all the latest developments in the field High-power multilevel converters are well known in industry and academia as one of the preferred choices for efficient power conversion. Over the past decade, several power converters have been developed and commercialized in the form of standard and customized products that power a wide range of industrial applications. Currently, the modular multilevel converter is a fast-growing technology and has received wide acceptance from both industry and academia. Providing adequate technical background for graduate- and undergraduate-level teaching, this book includes a comprehensive analysis of the conventional and advanced modular multilevel converters employed in motor drives, HVDC systems, and power quality improvement. Modular Multilevel Converters: Analysis, Control, and Applications provides an overview of high-power converters, reference frame theory, classical control methods, pulse width modulation schemes, advanced model predictive control methods, modeling of ac drives, advanced drive control schemes, modeling and control of HVDC systems, active and reactive power control, power quality problems, reactive power, harmonics and unbalance compensation, modeling and control of static synchronous compensators (STATCOM) and unified power quality compensators. Furthermore, this book: Explores technical challenges, modeling, and control of various modular multilevel converters in a wide range of applications such as transformer and transformerless motor drives, high voltage direct current transmission systems, and power quality improvement Reflects the latest developments in high-power converters in medium-voltage motor drive systems Offers design guidance with tables, charts graphs, and MATLAB simulations Modular Multilevel Converters: Analysis, Control, and Applications is a valuable reference book for academic researchers, practicing engineers, and other professionals in the field of high power converters. It also serves well as a textbook for graduate-level students.
Construction Management for Industrial Projects. A Modular Guide for Project Managers Construction Management for Industrial Projects. A Modular Guide for Project Managers

Автор: Mohamed El-Reedy A.

Год издания: 

This book presents techniques for effective and successful project management across all phases of the project, covering all of the management tools and leadership skills for any industrial project. It presents advanced modern tools for use by management and engineers in decision making, and it covers the gap between project management theories of the actual project. This volume is a «one-stop shop» for project and construction management of industrial projects, for engineers, managers, owners, and anyone else working on the project.

Power Electronic Converters. PWM Strategies and Current Control Techniques Power Electronic Converters. PWM Strategies and Current Control Techniques

Автор: Eric Monmasson

Год издания: 

A voltage converter changes the voltage of an electrical power source and is usually combined with other components to create a power supply. This title is devoted to the control of static converters, which deals with pulse-width modulation (PWM) techniques, and also discusses methods for current control. Various application cases are treated. The book is ideal for professionals in power engineering, power electronics, and electric drives industries, as well as practicing engineers, university professors, postdoctoral fellows, and graduate students.

Multilevel Statistical Models Multilevel Statistical Models

Автор: Harvey Goldstein

Год издания: 

Throughout the social, medical and other sciences the importance of understanding complex hierarchical data structures is well understood. Multilevel modelling is now the accepted statistical technique for handling such data and is widely available in computer software packages. A thorough understanding of these techniques is therefore important for all those working in these areas. This new edition of Multilevel Statistical Models brings these techniques together, starting from basic ideas and illustrating how more complex models are derived. Bayesian methodology using MCMC has been extended along with new material on smoothing models, multivariate responses, missing data, latent normal transformations for discrete responses, structural equation modeling and survival models. Key Features: Provides a clear introduction and a comprehensive account of multilevel models. New methodological developments and applications are explored. Written by a leading expert in the field of multilevel methodology. Illustrated throughout with real-life examples, explaining theoretical concepts. This book is suitable as a comprehensive text for postgraduate courses, as well as a general reference guide. Applied statisticians in the social sciences, economics, biological and medical disciplines will find this book beneficial.

Power Electronics and Energy Conversion Systems, Fundamentals and Hard-switching Converters Power Electronics and Energy Conversion Systems, Fundamentals and Hard-switching Converters

Автор: Adrian Ioinovici

Год издания: 

Power Electronics and Energy Conversion Systems is a definitive five-volume reference spanning classical theory through practical applications and consolidating the latest advancements in energy conversion technology. Comprehensive yet highly accessible, each volume is organised in a basic-to-sophisticated crescendo, providing a single-source reference for undergraduate and graduate students, researchers and designers. Volume 1 Fundamentals and Hard-switching Converters introduces the key challenges in power electronics from basic components to operation principles and presents classical hard- and soft-switching DC to DC converters, rectifiers and inverters. At a more advanced level, it provides comprehensive analysis of DC and AC models comparing the available approaches for their derivation and results. A full treatment of DC to DC hard-switching converters is given, from fundamentals to modern industrial solutions and practical engineering insight. The author elucidates various contradictions and misunderstandings in the literature, for example, in the treatment of the discontinuous conduction operation or in deriving AC small-signal models of converters. Other key features: • Consolidates the latest advancements in hard-switching converters including discontinuous capacitor voltage mode, and their use in power-factor-correction applications • Includes fully worked design examples, exercises, and case studies, with discussion of the practical consequences of each choice made during the design • Explains all topics in detail with step-by-step derivation of formulas appropriate for energy conversion courses • End-of-section review of the learned material • Includes topics treated in recent journal, conference and industry application coverage on solutions, theory and practical concerns With emphasis on clear explanation, the text offers both a thorough understanding of DC to DC converters for undergraduate and graduate students in power electronics, and more detailed material suitable for researchers, designers and practising engineers working on the development and design of power electronics. This is an accessible reference for engineering and procurement managers from industries such as consumer electronics, integrated circuits, aerospace and renewable energy.

Integrative Computational Materials Engineering. Concepts and Applications of a Modular Simulation Platform Integrative Computational Materials Engineering. Concepts and Applications of a Modular Simulation Platform

Автор: Schmitz Georg J.

Год издания: 

Presenting the results of an ambitious project, this book summarizes the efforts towards an open, web-based modular and extendable simulation platform for materials engineering that allows simulations bridging several length scales. In so doing, it covers processes along the entire value chain and even describes such different classes of materials as metallic alloys and polymers. It comprehensively describes all structural ideas, the underlying concepts, standard specifications, the verification results obtained for different test cases and additionally how to utilize the platform as a user and how to join it as a provider. A resource for researchers, users and simulation software providers alike, the monograph provides an overview of the current status, serves as a generic manual for prospective users, and offers insights into the inner modular structure of the simulation platform.