Найти книгу: "Polymers and Electromagnetic Radiation"


Polymers and Electromagnetic Radiation Polymers and Electromagnetic Radiation

Автор: Wolfram Schnabel

Год издания: 0000

This first book to cover the interaction of polymers with radiation from the entire electromagnetic spectrum adopts a multidisciplinary approach to bridge polymer chemistry and physics, photochemistry, photophysics and materials science. The text is equally unique in its scope, devoting equal amounts of attention to the three aspects of synthesis, characterization, and applications. The first part deals with the interaction of polymers with non-ionizing radiation in the frequency-range from sub-terahertz via infrared radiation to visible and ultraviolet light, while the second covers interaction with ionizing radiation from the extreme ultraviolet to ?-ray photons. The result is a systematic overview of how both types of radiation can be used for different polymerization approaches, spectroscopy methods and lithography techniques. Authored by a world-renowned researcher and teacher with over 40 years of experience in the field, this is a highly practical and authoritative guide.
Electromagnetics in biology Electromagnetics in biology

Автор: M. Kato

Год издания: 

This book will serve as an ideal guide to the relatively new and complex field of bioelectromagnetics for students and researchers interested in the interaction of biological systems and electromagnetic fields. Coverage details:(1) biological responses of human and animals, both in vivo and in vitro methodologies, to magnetic and/or electromagnetic field exposure, (2) characteristics of effective fields, (3) hypotheses to explain possible mechanisms of interaction between the fields and cells, and (4) induced current in ELF and induced heat in RF fields as key interaction mechanisms.

What are Polymers? (Что такое полимеры?) What are Polymers? (Что такое полимеры?)

Автор: А. Н. Безруков

Год издания: 

Рассмотрены вопросы строения, получения, применения полимеров и исследования их свойств. Отвечает требованиям дисциплин «Специализированный профессионально-ориентированный перевод» (английский язык) и «Английский язык (технический перевод)». Содержит технические основы науки о полимерах на английском языке, теорию технического перевода и комплекс заданий для аудиторной работы по практике перевода и изучению терминологии.

Self-Healing Polymers. From Principles to Applications Self-Healing Polymers. From Principles to Applications

Автор: Wolfgang Binder H.

Год издания: 

Self-healing is a well-known phenomenon in nature: a broken bone merges after some time and if skin is damaged, the wound will stop bleeding and heals again. This concept can be mimicked in order to create polymeric materials with the ability to regenerate after they have suffered degradation or wear. Already realized applications are used in aerospace engineering, and current research in this fascinating field shows how different self-healing mechanisms proven successful by nature can be adapted to produce even more versatile materials. The book combines the knowledge of an international panel of experts in the field and provides the reader with chemical and physical concepts for self-healing polymers, including aspects of biomimetic processes of healing in nature. It shows how to design self-healing polymers and explains the dynamics in these systems. Different self-healing concepts such as encapsulated systems and supramolecular systems are detailed. Chapters on analysis and friction detection in self-healing polymers and on applications round off the book.

Polymers in Industry from A to Z. A Concise Encyclopedia Polymers in Industry from A to Z. A Concise Encyclopedia

Автор: Leno Mascia

Год издания: 

We are surrounded by polymers: Whether it's to prepare a meal, use computer keyboards and mousepads, or step onto a new playground, you'll encounter a plastic product made of polymers. Owing to the extraordinary range of properties accessible in polymeric materials, they play an essential and ubiquitous role in everyday life – from plastics and elastomers on the one hand to natural biopolymers such as DNA and proteins that are essential for life on the other. This desktop and library reference book provides a comprehensive yet concise overview of the materials, manufacture, structure and architecture, properties, processing, and applications of withing the field of polymers. The book offers a unique mix of theory and application, the essential personal reference for anyone studying or working within the field of polymers.

Field Computation for Accelerator Magnets. Analytical and Numerical Methods for Electromagnetic Design and Optimization Field Computation for Accelerator Magnets. Analytical and Numerical Methods for Electromagnetic Design and Optimization

Автор: Stephan Russenschuck

Год издания: 

Written by a leading expert on the electromagnetic design and engineering of superconducting accelerator magnets, this book offers the most comprehensive treatment of the subject to date. In concise and easy-to-read style, the author lays out both the mathematical basis for analytical and numerical field computation and their application to magnet design and manufacture. Of special interest is the presentation of a software-based design process that has been applied to the entire production cycle of accelerator magnets from the concept phase to field optimization, production follow-up, and hardware commissioning. Included topics: Technological challenges for the Large Hadron Collider at CERN Algebraic structures and vector fields Classical vector analysis Foundations of analytical field computation Fields and Potentials of line currents Harmonic fields The conceptual design of iron- and coil-dominated magnets Solenoids Complex analysis methods for magnet design Elementary beam optics and magnet polarities Numerical field calculation using finite- and boundary-elements Mesh generation Time transient effects in superconducting magnets, including superconductor magnetization and cable eddy-currents Quench simulation and magnet protection Mathematical optimization techniques using genetic and deterministic algorithms Practical experience from the electromagnetic design of the LHC magnets illustrates the analytical and numerical concepts, emphasizing the relevance of the presented methods to a great many applications in electrical engineering. The result is an indispensable guide for high-energy physicists, electrical engineers, materials scientists, applied mathematicians, and systems engineers.