![]() | Первая часть книги посвящена теории. В ней сначала подробно описываются конечные вероятностные пространства. Чтобы читать её, достаточно уметь оперировать с конечными суммами и произведениями. Переход к счётным пространствам требует знакомства с рядами. В непрерывных пространствах нужны интегралы. Теоретические выводы поясняются большим количеством примеров.
Вторую часть книги составляют задачи с решениями. Здесь повторяются основные определения и формулы из первой части. Это позволяет при желании читать вторую часть независимо от первой.
В части 3 пособия подробно описываются элементы дифференциального и интегрального исчислений, которые использовались в части 1. Объединён материал из пособий автора "Лекции по математическому анализу" и "Интегрирование равномерно измеримых функций". Основным объектом является интеграл Стилтьеса. Он определяется как ограниченный линейный функционал на пространстве функций без сложных разрывов, которое рассматривалось в части 1. Интеграл Стилтьеса широко применяется не только в теории вероятностей, но и в геометрии, механике и других областях математики. |
elementarnaya-teoriya-veroyatnostey-savelev-v-3-chastyah.rar
Файл удален