|
This only and up-to-date monograph on this versatile method covers its use in a range of applications spanning the fields of physics, materials science, electrical engineering, medicine, and research and industry. Following an introduction, the highly experienced author goes on to investigate acoustic field structure, output signal formation in transmission raster acoustic microscopes and non-linear acoustic effects. Further chapters deal with the visco-elastic properties and microstructure of the model systems and composites used, as well as polymer composite materials and the microstructure and physical-mechanical properties of biological tissues. A handy reference for materials scientists, electrical engineers, radiologists, laboratory medics, test engineers, physicists, and graduate students. Получить ссылку |
Imaging Marine Life. Macrophotography and Microscopy Approaches for Marine Biology
Автор: Emmanuel Reynaud G.
Год издания:
Written by an international team of experts from the Tara Oceans Marine Biology Imaging Platform (TAOMI), this is the first and only compendium on marine imaging technologies, and includes all known underwater as well as on-land techniques. TAOMI is imaging the largest collection of marine organisms in recent history, ranging from viruses to corals, and is duplicated on land to perform high throughput confocal analysis of plankton, X-ray tomography as well as cryo-electron microscopy. This unique platform combines underwater imaging with cytometry, stereomicroscopy, fluorescence microscopy and 3D microscopy – all of which are covered in this practical book, along with remote sensing, MRI, and optical projection tomography. The definitive resource for every marine biologist who is planning to image marine species, whether underwater or on land.
Underwater Acoustics. Analysis, Design and Performance of Sonar
Автор: Richard Hodges P.
Год издания:
Offering complete and comprehensive coverage of modern sonar spectrum system analysis, Underwater Acoustics: Analysis, Design and Performance of Sonar provides a state-of-the-art introduction to the subject and has been carefully structured to offer a much-needed update to the classic text by Urick. Expanded to included computational approaches to the topic, this book treads the line between the highly theoretical and mathematical texts and the more populist, non-mathematical books that characterize the existing literature in the field. The author compares and contrasts different techniques for sonar design, analysis and performance prediction and includes key experimental and theoretical results, pointing the reader towards further detail with extensive references. Practitioners in the field of sonar design, analysis and performance prediction as well as graduate students and researchers will appreciate this new reference as an invaluable and timely contribution to the field. Chapters include the sonar equation, radiated, self and ambient noise, active sonar sources, transmission loss, reverberation, transducers, active target strength, statistical detection theory, false alarms, contacts and targets, variability and uncertainty, modelling detections and tactical decision aids, cumulative probability of detection, tracking target motion analysis and localization, and design and evaluation of sonars
X-Rays in Nanoscience. Spectroscopy, Spectromicroscopy, and Scattering Techniques
Автор: Jinghua Guo
Год издания:
An up-to-date overview of the different x-ray based methods in the hot fields of nanoscience and nanotechnology, including methods for imaging nanomaterials, as well as for probing the electronic structure of nanostructured materials in order to investigate their different properties. Written by authors at one of the world's top facilities working with these methods, this monograph presents and discusses techniques and applications in the fields of x-ray scattering, spectroscopy and microscope imaging. The resulting systematic collection of these advanced tools will benefit graduate students, postdocs as well as professional researchers.
Plumbing, Electricity, Acoustics
Автор: Norbert M. Lechner
Год издания:
Discover sustainable methods for designing crucial building systems for architects. This indispensable companion to Norbert Lechner's landmark volume Heating, Cooling, Lighting: Sustainable Design Methods for Architects, Third Edition completes the author's mission to cover all topics in the field of sustainable environmental control. It provides knowledge appropriate for the level of complexity needed at the schematic design stage and presents the most up-to-date information available in a concise, logical, accessible manner and arrangement. Although sustainability deals with many issues, those concerning energy and efficiency are the most critical, making an additional goal of this book one of providing architects with the skills and knowledge needed to create buildings that use electricity and water efficiently. Guidelines and rules-of-thumb are provided to help designers make their buildings use less energy, less water, and less of everything else to achieve their primary objectives. In addition, this book: Addresses ways to reduce electricity usage through more efficient lighting systems and appliances and by incorporating automatic switches and control systems that turn off systems not in use. Covers the design of well-planned effluent treatment systems that protect against potential health hazards while also becoming a valuable source of reclaimed water and fertilize.r Provides coverage of fire protection and conveyance systems, including very efficient types of elevators and escalators and designs that encourage the use of stairs or ramps. Complete with case studies that illustrate how these systems are incorporated into large-project plans, Plumbing, Electricity, Acoustics is an indispensable resource for any architect involved in a sustainable design project.
Acoustical Imaging. Techniques and Applications for Engineers
Автор: Woon Gan Siong
Год издания:
The technology of acoustical imaging has advanced rapidly over the last sixty years, and now represents a sophisticated technique applied to a wide range of fields including non-destructive testing, medical imaging, underwater imaging and SONAR, and geophysical exploration. Acoustical Imaging: Techniques and Applications for Engineers introduces the basic physics of acoustics and acoustical imaging, before progressing to more advanced topics such as 3D and 4D imaging, elasticity theory, gauge invariance property of acoustic equation of motion and acoustic metamaterials. The author draws together the different technologies in sonar, seismic and ultrasound imaging, highlighting the similarities between topic areas and their common underlying theory. Key features: Comprehensively covers all of the important applications of acoustical imaging. Introduces the gauge invariance property of acoustic equation of motion, with applications in the elastic constants of isotropic solids, time reversal acoustics, negative refraction, double negative acoustical metamaterial and acoustical cloaking. Contains up to date treatments on latest theories of sound propagation in random media, including statistical treatment and chaos theory. Includes a chapter devoted to new acoustics based on metamaterials, a field founded by the author, including a new theory of elasticity and new theory of sound propagation in solids and fluids and tremendous potential in several novel applications. Covers the hot topics on acoustical imaging including time reversal acoustics, negative refraction and acoustical cloaking. Acoustical Imaging: Techniques and Applications for Engineers is a comprehensive reference on acoustical imaging and forms a valuable resource for engineers, researchers, senior undergraduate and graduate students.
Чтобы скачать книгу, отключите блокировку рекламы. Спасибо!