|
In this, the only up-to-date book on this key technology, the number-one expert in the field perfectly blends academic knowledge and industrial applications. Adopting a didactical approach, Professor Ronda discusses all the underlying principles, such that both researchers as well as beginners in the field will profit from this book. The focus is on the inorganic side and the phenomena of luminescence behind the manifold applications illustrated here, including displays, LEDs, lamps, and medical applications. Valuable reading for chemists and electrochemists, as well as materials scientists, those working in the optical and chemical industry, plus lamp and lighting manufacturers. Получить ссылку |
Optically Stimulated Luminescence. Fundamentals and Applications
Автор: Yukihara Eduardo G.
Год издания:
Optically stimulated luminescence has developed into one of the leading optical techniques for the measurement and detection of ionizing radiation. This text covers, in a readable manner, advanced modern applications of the technique, how it can play a useful role in different areas of dosimetry and how to approach the challenges presented when working with optically stimulated luminescence. The six chapters are as follows: Introduction, including a short history of OSL and details of successful applications Theory and Practical Aspects Personal Dosimetry Space Dosimetry Medical Dosimetry Other Applications and Concepts, including retrospective and accident dosimetry, environmental monitoring and UV dosimetry Throughout the book, the underlying theory is discussed on an as-needed basis for a complete understanding of the phenomena, but with an emphasis of the practical applications of the technique. The authors also give background information and relevant key references on each method, inviting the reader to explore deeper into the subject independently. Postgraduates, researchers, and those involved with radiation dosimetry will find this book particularly useful. The material is both relevant and accessible for both specialists and those new to the field, therefore is fundamental to any academic interested in modern advances of the subject.
Thermally and Optically Stimulated Luminescence. A Simulation Approach
Автор: Chen Reuven
Год издания:
Thermoluminescence (TL) and optically stimulated luminescence (OSL) are two of the most important techniques used in radiation dosimetry. They have extensive practical applications in the monitoring of personnel radiation exposure, in medical dosimetry, environmental dosimetry, spacecraft, nuclear reactors, food irradiation etc., and in geological /archaeological dating. Thermally and Optically Stimulated Luminescence: A Simulation Approach describes these phenomena, the relevant theoretical models and their prediction, using both approximations and numerical simulation. The authors concentrate on an alternative approach in which they simulate various experimental situations by numerically solving the relevant coupled differential equations for chosen sets of parameters. Opening with a historical overview and background theory, other chapters cover experimental measurements, dose dependence, dating procedures, trapping parameters, applications, radiophotoluminescence, and effects of ionization density. Designed for practitioners, researchers and graduate students in the field of radiation dosimetry, Thermally and Optically Stimulated Luminescence provides an essential synthesis of the major developments in modeling and numerical simulations of thermally and optically stimulated processes.
Luminescence of Lanthanide Ions in Coordination Compounds and Nanomaterials
Автор: Группа авторов
Год издания:
This comprehensive book presents the theoretical principles, current applications and latest research developments in the field of luminescent lanthanide complexes; a rapidly developing area of research which is attracting increasing interest amongst the scientific community. Luminescence of Lanthanide Ions in Coordination Compounds and Nanomaterials begins with an introduction to the basic theoretical and practical aspects of lanthanide ion luminescence, and the spectroscopic techniques used to evaluate the efficiency of luminescence. Subsequent chapters introduce a variety of different applications including: • Circularly polarized luminescence • Luminescence bioimaging with lanthanide complexes • Two-photon absorption of lanthanide complexes • Chemosensors • Upconversion luminescence • Excitation spectroscopy • Heterometallic complexes containing lanthanides Each chapter presents a detailed introduction to the application, followed by a description of experimental techniques specific to the area and an extensive review of recent literature. This book is a valuable introduction to the literature for scientists new to the field, as well as providing the more experienced researcher with a comprehensive resource covering the most relevant information in the field; a ‘one stop shop’ for all key references.
Understanding Sonoluminescence
Автор: Thomas Brennan
Год издания:
Sonoluminescence is the transformation of sound into light. To most who know how to do sonoluminescence, it's just a little glowing bubble levitating in a flask of water. But it holds some surprises that have been overlooked. This book looks to reform our scientific understanding of sonoluminescence and explore the practical applications as an energy source.
An Introduction to Time-Resolved Optically Stimulated Luminescence
Автор: Makaiko L Chithambo
Год издания:
Time-resolved optical stimulation of luminescence has become established as an important method for measurement of optically stimulated luminescence. Its enduring appeal is easy to see with the number of materials studied growing from the initial focus on natural minerals such as quartz and feldspar to synthetic dosimeters such as i?-Al2O3:C, BeO and YAlO3:Mn2+. The aim of time-resolved optical stimulation is to separate in time the stimulation and emission of luminescence. The luminescence is stimulated from a sample using a brief light pulse. The ensuing luminescence can be monitored either during stimulation in the presence of scattered stimulating light or after the light-pulse. The time-resolved luminescence spectrum measured in this way can be resolved into components each with a distinct lifetime. The lifetimes are linked to physical processes of luminescence and thus provide a means to study dynamics involving charge transfer between point-defects in materials. This book is devoted to time-resolved optically stimulated luminescence and is suitable for researchers with an interest in the study of point-defects using luminescence methods. The book first sets the method within the context of luminescence field at large and then provides an overview of the instrumentation used. There is much attention on models for time-resolved optically stimulated luminescence, two of which are analytical and the third of which is based on computational simulation of experimental results. To bring relevance to the discussion, the book draws on examples from studies on quartz and a-Al2O3:C, two materials widely investigated using this method. The book shows how kinetic analysis for various thermal effects such as thermal quenching and thermal assistance can be investigated using time-resolved luminescence. Although use of light sums is an obvious choice for this, contemporary work is discussed to show the versatility of using other alternative methods such the dynamic throughput.
Чтобы скачать книгу, отключите блокировку рекламы. Спасибо!