Скачать книгу - Bayes Linear Statistics



Bayesian methods combine information available from data with any prior information available from expert knowledge. The Bayes linear approach follows this path, offering a quantitative structure for expressing beliefs, and systematic methods for adjusting these beliefs, given observational data. The methodology differs from the full Bayesian methodology in that it establishes simpler approaches to belief specification and analysis based around expectation judgements. Bayes Linear Statistics presents an authoritative account of this approach, explaining the foundations, theory, methodology, and practicalities of this important field. The text provides a thorough coverage of Bayes linear analysis, from the development of the basic language to the collection of algebraic results needed for efficient implementation, with detailed practical examples. The book covers: The importance of partial prior specifications for complex problems where it is difficult to supply a meaningful full prior probability specification. Simple ways to use partial prior specifications to adjust beliefs, given observations. Interpretative and diagnostic tools to display the implications of collections of belief statements, and to make stringent comparisons between expected and actual observations. General approaches to statistical modelling based upon partial exchangeability judgements. Bayes linear graphical models to represent and display partial belief specifications, organize computations, and display the results of analyses. Bayes Linear Statistics is essential reading for all statisticians concerned with the theory and practice of Bayesian methods. There is an accompanying website hosting free software and guides to the calculations within the book.


Applied Statistics and the SAS Programming Language Applied Statistics and the SAS Programming Language

Автор: Ronald P. Cody, Jeffrey K. Smith

Год издания: 

This book is intended to provide the applied researcher with the capacity to perform statistical analyses with SAS software without wading through pages of technical documentation. The researcher is provided with the necessary SAS statements to run programs for most of the commonly used statistics, explanations of the computer output, interpretations of results, and examples of how to construct tables and write up results for reports and journal articles.


Статистика туризма = Tourism statistics Статистика туризма = Tourism statistics

Автор: Татьяна Карманова

Год издания: 

Раскрыты основополагающие принципы и сущность статистики туризма. Детально рассмотрены предмет, задачи и система показателей статистики туризма, методология статистической оценки и анализ развития международного и внутреннего туризма, а также современные направления развития статистики туризма в мире и России. Соответствует Федеральному государственному образовательному стандарту высшего профессионального образования третьего поколения. Для студентов бакалавриата, магистратуры, аспирантов, преподавателей высших учебных заведений, слушателей системы послевузовского образования, а также бухгалтеров, аудиторов, экономистов, менеджеров предприятий туристской индустрии.


Mivar NETs and logical inference with the linear complexity Mivar NETs and logical inference with the linear complexity

Автор: Олег Варламов

Год издания: 

MIVAR: Transition from Productions to Bipartite Graphs MIVAR Nets and Practical Realization of Automated Constructor of Algorithms Handling More than Three Million Production Rules. The theoretical transition from the graphs of production systems to the bipartite graphs of the MIVAR nets is shown. Examples of the implementation of the MIVAR nets in the formalisms of matrixes and graphs are given. The linear computational complexity of algorithms for automated building of objects and rules of the MIVAR nets is theoretically proved. On the basis of the MIVAR nets the UDAV software complex is developed, handling more than 1.17 million objects and more than 3.5 million rules on ordinary computers. The results of experiments that confirm a linear computational complexity of the MIVAR method of information processing are given.


Прогнозное моделирование в IBM SPSS Statistics, R и Python. Метод деревьев решений и случайный лес Прогнозное моделирование в IBM SPSS Statistics, R и Python. Метод деревьев решений и случайный лес

Автор: Артем Груздев

Год издания: 

Данная книга представляет собой практическое руководство по применению метода деревьев решений и случайного леса для задач сегментации, классификации и прогнозирования. Каждый раздел книги сопровождается практическим примером. Кроме того, книга содержит программный код SPSS Syntax, R и Python, позволяющий полностью автоматизировать процесс построения прогнозных моделей. Автором обобщены лучшие практики использования деревьев решений и случайного леса от таких компаний, как Citibank N.A., Transunion и DBS Bank. Издание будет интересно маркетологам, риск-аналитикам и другим специалистам, занимающимся разработкой и внедрением прогнозных моделей.


Bayesian Risk Management. A Guide to Model Risk and Sequential Learning in Financial Markets Bayesian Risk Management. A Guide to Model Risk and Sequential Learning in Financial Markets

Автор: Matt Sekerke

Год издания: 

A risk measurement and management framework that takes model risk seriously Most financial risk models assume the future will look like the past, but effective risk management depends on identifying fundamental changes in the marketplace as they occur. Bayesian Risk Management details a more flexible approach to risk management, and provides tools to measure financial risk in a dynamic market environment. This book opens discussion about uncertainty in model parameters, model specifications, and model-driven forecasts in a way that standard statistical risk measurement does not. And unlike current machine learning-based methods, the framework presented here allows you to measure risk in a fully-Bayesian setting without losing the structure afforded by parametric risk and asset-pricing models. Recognize the assumptions embodied in classical statistics Quantify model risk along multiple dimensions without backtesting Model time series without assuming stationarity Estimate state-space time series models online with simulation methods Uncover uncertainty in workhorse risk and asset-pricing models Embed Bayesian thinking about risk within a complex organization Ignoring uncertainty in risk modeling creates an illusion of mastery and fosters erroneous decision-making. Firms who ignore the many dimensions of model risk measure too little risk, and end up taking on too much. Bayesian Risk Management provides a roadmap to better risk management through more circumspect measurement, with comprehensive treatment of model uncertainty.