Скачать книгу - Mathematical Statistics



Presents a unified approach to parametric estimation, confidence intervals, hypothesis testing, and statistical modeling, which are uniquely based on the likelihood function This book addresses mathematical statistics for upper-undergraduates and first year graduate students, tying chapters on estimation, confidence intervals, hypothesis testing, and statistical models together to present a unifying focus on the likelihood function. It also emphasizes the important ideas in statistical modeling, such as sufficiency, exponential family distributions, and large sample properties. Mathematical Statistics: An Introduction to Likelihood Based Inference makes advanced topics accessible and understandable and covers many topics in more depth than typical mathematical statistics textbooks. It includes numerous examples, case studies, a large number of exercises ranging from drill and skill to extremely difficult problems, and many of the important theorems of mathematical statistics along with their proofs. In addition to the connected chapters mentioned above, Mathematical Statistics covers likelihood-based estimation, with emphasis on multidimensional parameter spaces and range dependent support. It also includes a chapter on confidence intervals, which contains examples of exact confidence intervals along with the standard large sample confidence intervals based on the MLE's and bootstrap confidence intervals. There’s also a chapter on parametric statistical models featuring sections on non-iid observations, linear regression, logistic regression, Poisson regression, and linear models. Prepares students with the tools needed to be successful in their future work in statistics data science Includes practical case studies including real-life data collected from Yellowstone National Park, the Donner party, and the Titanic voyage Emphasizes the important ideas to statistical modeling, such as sufficiency, exponential family distributions, and large sample properties Includes sections on Bayesian estimation and credible intervals Features examples, problems, and solutions Mathematical Statistics: An Introduction to Likelihood Based Inference is an ideal textbook for upper-undergraduate and graduate courses in probability, mathematical statistics, and/or statistical inference.


Applied Statistics and the SAS Programming Language Applied Statistics and the SAS Programming Language

Автор: Ronald P. Cody, Jeffrey K. Smith

Год издания: 

This book is intended to provide the applied researcher with the capacity to perform statistical analyses with SAS software without wading through pages of technical documentation. The researcher is provided with the necessary SAS statements to run programs for most of the commonly used statistics, explanations of the computer output, interpretations of results, and examples of how to construct tables and write up results for reports and journal articles.


Статистика туризма = Tourism statistics Статистика туризма = Tourism statistics

Автор: Татьяна Карманова

Год издания: 

Раскрыты основополагающие принципы и сущность статистики туризма. Детально рассмотрены предмет, задачи и система показателей статистики туризма, методология статистической оценки и анализ развития международного и внутреннего туризма, а также современные направления развития статистики туризма в мире и России. Соответствует Федеральному государственному образовательному стандарту высшего профессионального образования третьего поколения. Для студентов бакалавриата, магистратуры, аспирантов, преподавателей высших учебных заведений, слушателей системы послевузовского образования, а также бухгалтеров, аудиторов, экономистов, менеджеров предприятий туристской индустрии.


Прогнозное моделирование в IBM SPSS Statistics, R и Python. Метод деревьев решений и случайный лес Прогнозное моделирование в IBM SPSS Statistics, R и Python. Метод деревьев решений и случайный лес

Автор: Артем Груздев

Год издания: 

Данная книга представляет собой практическое руководство по применению метода деревьев решений и случайного леса для задач сегментации, классификации и прогнозирования. Каждый раздел книги сопровождается практическим примером. Кроме того, книга содержит программный код SPSS Syntax, R и Python, позволяющий полностью автоматизировать процесс построения прогнозных моделей. Автором обобщены лучшие практики использования деревьев решений и случайного леса от таких компаний, как Citibank N.A., Transunion и DBS Bank. Издание будет интересно маркетологам, риск-аналитикам и другим специалистам, занимающимся разработкой и внедрением прогнозных моделей.


SPSS Statistics for Data Analysis and Visualization SPSS Statistics for Data Analysis and Visualization

Автор: Andrew Wheeler

Год издания: 

Dive deeper into SPSS Statistics for more efficient, accurate, and sophisticated data analysis and visualization SPSS Statistics for Data Analysis and Visualization goes beyond the basics of SPSS Statistics to show you advanced techniques that exploit the full capabilities of SPSS. The authors explain when and why to use each technique, and then walk you through the execution with a pragmatic, nuts and bolts example. Coverage includes extensive, in-depth discussion of advanced statistical techniques, data visualization, predictive analytics, and SPSS programming, including automation and integration with other languages like R and Python. You'll learn the best methods to power through an analysis, with more efficient, elegant, and accurate code. IBM SPSS Statistics is complex: true mastery requires a deep understanding of statistical theory, the user interface, and programming. Most users don't encounter all of the methods SPSS offers, leaving many little-known modules undiscovered. This book walks you through tools you may have never noticed, and shows you how they can be used to streamline your workflow and enable you to produce more accurate results. Conduct a more efficient and accurate analysis Display complex relationships and create better visualizations Model complex interactions and master predictive analytics Integrate R and Python with SPSS Statistics for more efficient, more powerful code These «hidden tools» can help you produce charts that simply wouldn't be possible any other way, and the support for other programming languages gives you better options for solving complex problems. If you're ready to take advantage of everything this powerful software package has to offer, SPSS Statistics for Data Analysis and Visualization is the expert-led training you need.


Style and Statistics. The Art of Retail Analytics Style and Statistics. The Art of Retail Analytics

Автор: Brittany Bullard

Год издания: 

A non-technical guide to leveraging retail analytics for personal and competitive advantage Style & Statistics is a real-world guide to analytics in retail. Written specifically for the non-IT crowd, this book explains analytics in an approachable, understandable way, and provides examples of direct application to retail merchandise management, marketing, and operations. The discussion covers current industry trends and emerging-standard processes, and illustrates how analytics is providing new solutions to perennial retail problems. You'll learn how to leverage the benefits of analytics to boost your personal career, and how to interpret data in a way that's useful to the average end business user or shopper. Key concepts are detailed in easy-to-understand language, and numerous examples highlight the growing importance of understanding analytics in the retail environment. The power of analytics has become apparent across industries, but it's left an especially indelible mark on retail. It's a complex topic, but you don't need to be a data scientist to take advantage of the opportunities it brings. This book shows you what you need to know, and how to put analytics to work with retail-specific applications. Learn how analytics can help you be better at your job Dig deeper into the customer's needs, wants, and dreams Streamline merchandise management, pricing, marketing, and more Find solutions for inefficiencies and inaccuracies As the retail customer evolves, so must the retail industry. The retail landscape not only includes in-store but also website, mobile site, mobile apps, and social media. With more and more competition emerging on all sides, retailers need to use every tool at their disposal to create value and gain a competitive advantage. Analytics offers a number of ways to make your company stand out, whether it's through improved operations, customer experience, or any of the other myriad factors that build a great place to shop. Style & Statistics provides an analytics primer with a practical bent, specifically for the retail industry.