Скачать книгу - Stationary Bike





Generalizations of Cyclostationary Signal Processing. Spectral Analysis and Applications Generalizations of Cyclostationary Signal Processing. Spectral Analysis and Applications

Автор: Antonio Napolitano

Год издания: 

The relative motion between the transmitter and the receiver modifies the nonstationarity properties of the transmitted signal. In particular, the almost-cyclostationarity property exhibited by almost all modulated signals adopted in communications, radar, sonar, and telemetry can be transformed into more general kinds of nonstationarity. A proper statistical characterization of the received signal allows for the design of signal processing algorithms for detection, estimation, and classification that significantly outperform algorithms based on classical descriptions of signals.Generalizations of Cyclostationary Signal Processing addresses these issues and includes the following key features: Presents the underlying theoretical framework, accompanied by details of their practical application, for the mathematical models of generalized almost-cyclostationary processes and spectrally correlated processes; two classes of signals finding growing importance in areas such as mobile communications, radar and sonar. Explains second- and higher-order characterization of nonstationary stochastic processes in time and frequency domains. Discusses continuous- and discrete-time estimators of statistical functions of generalized almost-cyclostationary processes and spectrally correlated processes. Provides analysis of mean-square consistency and asymptotic Normality of statistical function estimators. Offers extensive analysis of Doppler channels owing to the relative motion between transmitter and receiver and/or surrounding scatterers. Performs signal analysis using both the classical stochastic-process approach and the functional approach, where statistical functions are built starting from a single function of time.


Time-Frequency Domain for Segmentation and Classification of Non-stationary Signals Time-Frequency Domain for Segmentation and Classification of Non-stationary Signals

Автор: Ali Moukadem

Год издания: 

This book focuses on signal processing algorithms based on the timefrequency domain. Original methods and algorithms are presented which are able to extract information from non-stationary signals such as heart sounds and power electric signals. The methods proposed focus on the time-frequency domain, and most notably the Stockwell Transform for the feature extraction process and to identify signatures. For the classification method, the Adaline Neural Network is used and compared with other common classifiers. Theory enhancement, original applications and concrete implementation on FPGA for real-time processing are also covered in this book.


Estimation of Stochastic Processes with Stationary Increments and Cointegrated Sequences Estimation of Stochastic Processes with Stationary Increments and Cointegrated Sequences

Автор: Maksym Luz

Год издания: 

Estimation of Stochastic Processes is intended for researchers in the field of econometrics, financial mathematics, statistics or signal processing. This book gives a deep understanding of spectral theory and estimation techniques for stochastic processes with stationary increments. It focuses on the estimation of functionals of unobserved values for stochastic processes with stationary increments, including ARIMA processes, seasonal time series and a class of cointegrated sequences. Furthermore, this book presents solutions to extrapolation (forecast), interpolation (missed values estimation) and filtering (smoothing) problems based on observations with and without noise, in discrete and continuous time domains. Extending the classical approach applied when the spectral densities of the processes are known, the minimax method of estimation is developed for a case where the spectral information is incomplete and the relations that determine the least favorable spectral densities for the optimal estimations are found.