|
A new edition of this popular text on robust statistics, thoroughly updated to include new and improved methods and focus on implementation of methodology using the increasingly popular open-source software R. Classical statistics fail to cope well with outliers associated with deviations from standard distributions. Robust statistical methods take into account these deviations when estimating the parameters of parametric models, thus increasing the reliability of fitted models and associated inference. This new, second edition of Robust Statistics: Theory and Methods (with R) presents a broad coverage of the theory of robust statistics that is integrated with computing methods and applications. Updated to include important new research results of the last decade and focus on the use of the popular software package R, it features in-depth coverage of the key methodology, including regression, multivariate analysis, and time series modeling. The book is illustrated throughout by a range of examples and applications that are supported by a companion website featuring data sets and R code that allow the reader to reproduce the examples given in the book. Unlike other books on the market, Robust Statistics: Theory and Methods (with R) offers the most comprehensive, definitive, and up-to-date treatment of the subject. It features chapters on estimating location and scale; measuring robustness; linear regression with fixed and with random predictors; multivariate analysis; generalized linear models; time series; numerical algorithms; and asymptotic theory of M-estimates. Explains both the use and theoretical justification of robust methods Guides readers in selecting and using the most appropriate robust methods for their problems Features computational algorithms for the core methods Robust statistics research results of the last decade included in this 2nd edition include: fast deterministic robust regression, finite-sample robustness, robust regularized regression, robust location and scatter estimation with missing data, robust estimation with independent outliers in variables, and robust mixed linear models. Robust Statistics aims to stimulate the use of robust methods as a powerful tool to increase the reliability and accuracy of statistical modelling and data analysis. It is an ideal resource for researchers, practitioners, and graduate students in statistics, engineering, computer science, and physical and social sciences. Получить ссылку |
Applied Statistics and the SAS Programming Language
Автор: Ronald P. Cody, Jeffrey K. Smith
Год издания:
This book is intended to provide the applied researcher with the capacity to perform statistical analyses with SAS software without wading through pages of technical documentation. The researcher is provided with the necessary SAS statements to run programs for most of the commonly used statistics, explanations of the computer output, interpretations of results, and examples of how to construct tables and write up results for reports and journal articles.
Пакеты расширения Matlab. Control System Toolbox и Robust Control Toolbox
Автор: В. М. Перельмутер
Год издания:
В книге описаны пакеты расширения Control System Toolbox и Robust Control Toolbox системы MATLAB 7, предназначенные для анализа и синтеза систем управления. Коротко изложены основные теоретические положения, принятые при разработке указанных пакетов расширения. Приведены многочисленные примеры использования этих пакетов расширения для решения конкретных задач с подробным пояснением выполняемых операций. Показаны возможности совместного использования пакетов Control System Toolbox и Robust Control Toolbox с пакетом Simulink, что увеличивает возможности всех трех указанных пакетов расширения. Книга может быть использована студентами вузов соответствующих специальностей при курсовом и дипломном проектировании, инженерами и научными работниками при создании новых и исследованиях уже разработанных систем автоматического управления. Книга рассчитана как на начинающих, так и на достаточно опытных пользователей.
Статистика туризма = Tourism statistics
Автор: Татьяна Карманова
Год издания:
Раскрыты основополагающие принципы и сущность статистики туризма. Детально рассмотрены предмет, задачи и система показателей статистики туризма, методология статистической оценки и анализ развития международного и внутреннего туризма, а также современные направления развития статистики туризма в мире и России. Соответствует Федеральному государственному образовательному стандарту высшего профессионального образования третьего поколения. Для студентов бакалавриата, магистратуры, аспирантов, преподавателей высших учебных заведений, слушателей системы послевузовского образования, а также бухгалтеров, аудиторов, экономистов, менеджеров предприятий туристской индустрии.
Прогнозное моделирование в IBM SPSS Statistics, R и Python. Метод деревьев решений и случайный лес
Автор: Артем Груздев
Год издания:
Данная книга представляет собой практическое руководство по применению метода деревьев решений и случайного леса для задач сегментации, классификации и прогнозирования. Каждый раздел книги сопровождается практическим примером. Кроме того, книга содержит программный код SPSS Syntax, R и Python, позволяющий полностью автоматизировать процесс построения прогнозных моделей. Автором обобщены лучшие практики использования деревьев решений и случайного леса от таких компаний, как Citibank N.A., Transunion и DBS Bank. Издание будет интересно маркетологам, риск-аналитикам и другим специалистам, занимающимся разработкой и внедрением прогнозных моделей.
SPSS Statistics for Data Analysis and Visualization
Автор: Andrew Wheeler
Год издания:
Dive deeper into SPSS Statistics for more efficient, accurate, and sophisticated data analysis and visualization SPSS Statistics for Data Analysis and Visualization goes beyond the basics of SPSS Statistics to show you advanced techniques that exploit the full capabilities of SPSS. The authors explain when and why to use each technique, and then walk you through the execution with a pragmatic, nuts and bolts example. Coverage includes extensive, in-depth discussion of advanced statistical techniques, data visualization, predictive analytics, and SPSS programming, including automation and integration with other languages like R and Python. You'll learn the best methods to power through an analysis, with more efficient, elegant, and accurate code. IBM SPSS Statistics is complex: true mastery requires a deep understanding of statistical theory, the user interface, and programming. Most users don't encounter all of the methods SPSS offers, leaving many little-known modules undiscovered. This book walks you through tools you may have never noticed, and shows you how they can be used to streamline your workflow and enable you to produce more accurate results. Conduct a more efficient and accurate analysis Display complex relationships and create better visualizations Model complex interactions and master predictive analytics Integrate R and Python with SPSS Statistics for more efficient, more powerful code These «hidden tools» can help you produce charts that simply wouldn't be possible any other way, and the support for other programming languages gives you better options for solving complex problems. If you're ready to take advantage of everything this powerful software package has to offer, SPSS Statistics for Data Analysis and Visualization is the expert-led training you need.
Чтобы скачать книгу, отключите блокировку рекламы. Спасибо!