Скачать книгу - Cost Estimation



Presents an accessible approach to the cost estimation tools, concepts, and techniques needed to support analytical and cost decisions Written with an easy-to-understand approach, Cost Estimation: Methods and Tools provides comprehensive coverage of the quantitative techniques needed by professional cost estimators and for those wanting to learn about this vibrant career field. Featuring the underlying mathematical and analytical principles of cost estimation, the book focuses on the tools and methods used to predict the research and development, production, and operating and support costs for successful cost estimation in industrial, business, and manufacturing processes. The book begins with a detailed historical perspective and key terms of the cost estimating field in order to develop the necessary background prior to implementing the presented quantitative methods. The book proceeds to fundamental cost estimation methods utilized in the field of cost estimation, including working with inflation indices, regression analysis, learning curves, analogies, cost factors, and wrap rates. With a step-by-step introduction to the practicality of cost estimation and the available resources for obtaining relevant data, Cost Estimation: Methods and Tools also features: Various cost estimating tools, concepts, and techniques needed to support business decisions Multiple questions at the end of each chapter to help readers obtain a deeper understanding of the discussed methods and techniques An overview of the software used in cost estimation, as well as an introduction to the application of risk and uncertainty analysis A Foreword from Dr. Douglas A. Brook, a professor in the Graduate School of Business and Public Policy at the Naval Postgraduate School, who spent many years working in the Department of Defense acquisition environment Cost Estimation: Methods and Tools is an excellent reference for academics and practitioners in decision science, operations research, operations management, business, and systems and industrial engineering, as well as a useful guide in support of professional cost estimation training and certification courses for practitioners. The book is also appropriate for graduate-level courses in operations research, operations management, engineering economics, and manufacturing and/or production processes.


Software Project Estimation. The Fundamentals for Providing High Quality Information to Decision Makers Software Project Estimation. The Fundamentals for Providing High Quality Information to Decision Makers

Автор: Alain Abran

Год издания: 

This book introduces theoretical concepts to explain the fundamentals of the design and evaluation of software estimation models. It provides software professionals with vital information on the best software management software out there. End-of-chapter exercises Over 100 figures illustrating the concepts presented throughout the book Examples incorporated with industry data


Option Pricing and Estimation of Financial Models with R Option Pricing and Estimation of Financial Models with R

Автор: Stefano Iacus M.

Год издания: 

Presents inference and simulation of stochastic process in the field of model calibration for financial times series modelled by continuous time processes and numerical option pricing. Introduces the bases of probability theory and goes on to explain how to model financial times series with continuous models, how to calibrate them from discrete data and further covers option pricing with one or more underlying assets based on these models. Analysis and implementation of models goes beyond the standard Black and Scholes framework and includes Markov switching models, Levy models and other models with jumps (e.g. the telegraph process); Topics other than option pricing include: volatility and covariation estimation, change point analysis, asymptotic expansion and classification of financial time series from a statistical viewpoint. The book features problems with solutions and examples. All the examples and R code are available as an additional R package, therefore all the examples can be reproduced.


Success Probability Estimation with Applications to Clinical Trials Success Probability Estimation with Applications to Clinical Trials

Автор: Daniele Martini De

Год издания: 

Provides an introduction to the various statistical techniques involved in medical research and drug development with a focus on estimating the success probability of an experiment Success Probability Estimation with Applications to Clinical Trials details the use of success probability estimation in both the planning and analyzing of clinical trials and in widely used statistical tests. Devoted to both statisticians and non-statisticians who are involved in clinical trials, Part I of the book presents new concepts related to success probability estimation and their usefulness in clinical trials, and each section begins with a non-technical explanation of the presented concepts. Part II delves deeper into the techniques for success probability estimation and features applications to both reproducibility probability estimation and conservative sample size estimation. Success Probability Estimation with Applications to Clinical Trials: • Addresses the theoretical and practical aspects of the topic and introduces new and promising techniques in the statistical and pharmaceutical industries Features practical solutions for problems that are often encountered in clinical trials Includes success probability estimation for widely used statistical tests, such as parametric and nonparametric models Focuses on experimental planning, specifically the sample size of clinical trials using phase II results and data for planning phase III trials Introduces statistical concepts related to success probability estimation and their usefulness in clinical trials Success Probability Estimation with Applications to Clinical Trials is an ideal reference for statisticians and biostatisticians in the pharmaceutical industry as well as researchers and practitioners in medical centers who are actively involved in health policy, clinical research, and the design and evaluation of clinical trials.


Small Area Estimation Small Area Estimation

Автор: Molina Isabel

Год издания: 

Praise for the First Edition «This pioneering work, in which Rao provides a comprehensive and up-to-date treatment of small area estimation, will become a classic…I believe that it has the potential to turn small area estimation…into a larger area of importance to both researchers and practitioners.» —Journal of the American Statistical Association Written by two experts in the field, Small Area Estimation, Second Edition provides a comprehensive and up-to-date account of the methods and theory of small area estimation (SAE), particularly indirect estimation based on explicit small area linking models. The model-based approach to small area estimation offers several advantages including increased precision, the derivation of «optimal» estimates and associated measures of variability under an assumed model, and the validation of models from the sample data. Emphasizing real data throughout, the Second Edition maintains a self-contained account of crucial theoretical and methodological developments in the field of SAE. The new edition provides extensive accounts of new and updated research, which often involves complex theory to handle model misspecifications and other complexities. Including information on survey design issues and traditional methods employing indirect estimates based on implicit linking models, Small Area Estimation, Second Edition also features: Additional sections describing the use of R code data sets for readers to use when replicating applications Numerous examples of SAE applications throughout each chapter, including recent applications in U.S. Federal programs New topical coverage on extended design issues, synthetic estimation, further refinements and solutions to the Fay-Herriot area level model, basic unit level models, and spatial and time series models A discussion of the advantages and limitations of various SAE methods for model selection from data as well as comparisons of estimates derived from models to reliable values obtained from external sources, such as previous census or administrative data Small Area Estimation, Second Edition is an excellent reference for practicing statisticians and survey methodologists as well as practitioners interested in learning SAE methods. The Second Edition is also an ideal textbook for graduate-level courses in SAE and reliable small area statistics.


Detection Estimation and Modulation Theory, Part I Detection Estimation and Modulation Theory, Part I

Автор: Harry L. Van Trees

Год издания: 

Originally published in 1968, Harry Van Trees’s Detection, Estimation, and Modulation Theory, Part I is one of the great time-tested classics in the field of signal processing. Highly readable and practically organized, it is as imperative today for professionals, researchers, and students in optimum signal processing as it was over thirty years ago. The second edition is a thorough revision and expansion almost doubling the size of the first edition and accounting for the new developments thus making it again the most comprehensive and up-to-date treatment of the subject. With a wide range of applications such as radar, sonar, communications, seismology, biomedical engineering, and radar astronomy, among others, the important field of detection and estimation has rarely been given such expert treatment as it is here. Each chapter includes section summaries, realistic examples, and a large number of challenging problems that provide excellent study material. This volume which is Part I of a set of four volumes is the most important and widely used textbook and professional reference in the field.